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MODELING THE EFFECT OF SURFACTANT ON DROPLET
BREAKUP IN A TURBULENT FLOW\ast 

RACHEL M. PHILIP\dagger , IAN J. HEWITT\dagger , AND PETER D. HOWELL\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In many industrial applications oil drops suspended in water are broken down by
turbulent fluid motion, assisted by the addition of surfactants. In this paper, we develop a model
for the interaction between droplet breakup and surfactant behavior in a homogeneous turbulent
flow. We derive equations for the evolution of droplet size distribution, surfactant concentration,
and surface tension. Our resulting model is analyzed using both asymptotic and numerical methods.
We find that the large-time behavior is highly dependent on the history of the drop-surfactant
interaction, and we identify distinct phases in the breakup dynamics. The model is then used to
investigate how increasing the concentration of surfactant promotes enhanced droplet breakup and
thus increases the proportion of smaller droplets. We also explore varying the method of surfactant
addition and find that there may be advantages to adding the surfactant gradually rather than all
at once. These results can be used to optimize surfactant application in industrial processes.
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1. Introduction. In an oceanic oil spill, oil drops suspended in water are broken
down by turbulent fluid motion. To accelerate the production of smaller droplets,
which are more easily dispersed and consumed by microorganisms [2, 13], surfactants
are added to reduce the oil-water surface tension and facilitate droplet breakup [22].
A similar process occurs in various other industrial applications, for example, oil-in-
water emulsions, which are formed and stabilized by intensive stirring and adding
surfactants [10]. Therefore, it is important to understand the interaction between
surfactants and turbulent droplet breakup.

The breakup of drops in a turbulent flow, without the presence of surfactants,
has been studied extensively, both experimentally and theoretically. Scaling laws,
supported by empirical data, have been used to predict the mean drop size as well
as the droplet size distribution [5, 12, 13, 14]. Another common approach is to use
population balance models to track the evolution of the droplet size distribution over
time [7, 16, 17, 23, 26]. In these population type models, the effect of a surfactant
on the drop size distribution has been addressed by reducing the surface tension to
a small constant value [24, 25]. However, this approach neglects the mechanism by
which surfactant addition changes the surface tension and how this is influenced by
the evolution of the drop size distribution.

Surfactant molecules possess a hydrophilic (water-attracting) head and hydropho-
bic (water-repelling) tail. Rather than remaining dissolved in a bulk water phase, it
is more energetically favorable for a surfactant monomer to adsorb to an oil-water
interface, with the hydrophobic tail expelled from the water. This action reduces
the local oil-water surface tension. If the bulk surfactant concentration is large, the
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130 R. M. PHILIP, I. J. HEWITT, AND P. D. HOWELL

monomers also form aggregates in the bulk called micelles. A micelle consists of any-
where between 15 and 100 monomers [1, 18] grouped together so that the hydrophilic
heads are in contact with the surrounding water while the hydrophobic tails are in the
interior. The bulk surfactant concentration above which these micelles form is called
the critical micelle concentration. Simple mathematical models for the concentration
of surfactant monomers and micelles in the bulk, and their effect on the concentration
of surfactant adsorbed at a single interface, may be found, for example, in [3, 4, 6].

In this paper we combine and extend these approaches to understand the effect
of surfactant on the turbulent breakup of oil droplets. For simplicity, we assume
spatial homogeneity; extensions to describe droplet breakup in a spatially varying
turbulent jet can be found in [20]. We also neglect the detailed structure of the
underlying turbulent flow and assume that the relevant hydrodynamic quantity that
affects breakup is the turbulent energy dissipation rate [8, 12, 20]. We use a droplet
population model to track changes in the drop size distribution with time. The
breakup rate in this model depends on both the energy of the turbulent flow and the
surface concentration of the surfactant, which controls the oil-water surface tension.
The model also incorporates the interaction of this surface concentration with the
bulk surfactant concentrations of monomers and micelles, which are all coupled to
the drop-size dynamics.

In section 2, we derive the coupled model for droplet breakup and drop-surfactant
interaction. The constitutive laws used to model the breakup rates are described in
section 3. In section 4, we solve the model, assuming a simplified breakup rate, which
is independent of droplet size, and we explore the behavior of the solutions with the
help of an asymptotic analysis. In section 5, we extend the results to a more general
breakup rate. In section 6, we use the model to examine the effect of varying the
concentration of surfactant added and the method of surfactant addition. We discuss
the implications of our results in section 7.

2. Mathematical modeling.

2.1. Droplet breakup. We consider a spatially homogeneous volume of water
with a low oil fraction. The oil and water have similar densities and viscosities and are
well-mixed. We suppose that the fluid is subject to homogeneous turbulent motion,
which is characterized by the constant turbulent energy dissipation rate \epsilon .

The distribution of oil droplets with volume v at time t is denoted by \phi (v, t).
Specifically, we define \phi as the distribution of volume fraction, so the total volume
fraction of oil is given by

\Phi (t) =

\int \infty 

0

\phi (v, t) dv.(2.1)

For later reference we also note that, assuming approximately spherical droplets, the
droplet surface area per unit volume is given by

S(t) = (6
\surd 
\pi )2/3

\int \infty 

0

\phi 

v1/3
dv.(2.2)

We let \gamma (\~v, \epsilon , \sigma ) denote the rate at which drops of volume \~v break up, assumed
to be a function of drop size, turbulent energy dissipation \epsilon , and surface tension \sigma .
For notational brevity, the dependence of \gamma on \epsilon will henceforth be suppressed. We
let \chi (v, \~v) be the daughter size distribution, representing the expected proportion of
the volume of a \~v-sized drop that becomes v-sized droplets upon breakup. A drop of
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EFFECT OF SURFACTANT ON TURBULENT DROPLET BREAKUP 131

Fig. 1. Schematic of interactions between the three populations of surfactant: adsorbed surfac-
tant on the surface of the oil droplets (surface concentration \Gamma ), free surfactant monomers in the
bulk (concentration c), and micelles (concentration cm).

volume \~v can only break up into drops with smaller volume, so that \chi (v, \~v) \equiv 0 for
v > \~v, and conservation of oil implies the identity\int \~v

0

\chi (v, \~v) dv \equiv 1.(2.3)

Note that \chi is assumed to depend only on droplet size, with all other effects captured
by \gamma . Specific choices for the forms of \gamma and \chi are discussed in section 3.

The droplet volume fraction, \phi (v, t), is governed by the master equation

\partial \phi 

\partial t
(v, t) =  - \gamma (v, \sigma )\phi (v, t) +

\int \infty 

v

\gamma (\~v, \sigma )\chi (v, \~v)\phi (\~v, t) d\~v.(2.4)

The first term on the right-hand side of (2.4) corresponds to drops of volume v
breaking up; the second represents the process by which larger drops break into those
of volume v. Taking the integral of (2.4) over all drop sizes and using (2.3) shows
that \Phi is constant, confirming that the total volume fraction of oil in the system
is conserved. The model (2.4) has been used in the literature in a similar form
[16, 17, 23, 26].

2.2. Surfactant. To determine the surface tension, \sigma , we now consider drop-
surfactant interactions (Figure 1). We measure the bulk concentration of surfactant
monomers, c, and micelles, cm, in units of moles per unit volume, while the surface
concentration, \Gamma , is measured in moles of adsorbed surfactant per unit area. We make
the simplifying assumption that the surface concentration, \Gamma , is independent of drop
size, so the moles of adsorbed surfactant per unit volume is \Gamma S, where S is the surface
area fraction defined in (2.2).

The surface tension depends on the surface concentration, and we model this
dependence using the Frumkin equation [6],

\sigma = \sigma 0 +RT\Gamma m log

\biggl( 
1 - \Gamma 

\Gamma m

\biggr) 
,(2.5)

where R is the gas constant, T is the (assumed constant) temperature, and \Gamma m is
the theoretical maximum surface concentration. Equation (2.5) describes how, as the
surface concentration increases, the surface tension decreases from its undisturbed
value \sigma 0.

It remains to determine \Gamma by considering interactions between micelles, surfactant
monomers, and adsorbed surfactant. Monomers can aggregate to form micelles, and
the micelles can break up into monomers. These processes are modeled using the law
of mass action,

dcm
dt

= k+0 c
Nm  - k - 0 cm,(2.6)
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132 R. M. PHILIP, I. J. HEWITT, AND P. D. HOWELL

where k+0 and k - 0 are the rates at which micelles form and break up, respectively.
We suppose that all micelles consist of the same number Nm of monomers, which is
typically large.

The exchange between bulk and adsorbed surfactant is modeled by the Langmuir--
Hinshelwood equation [6] as

d(\Gamma S)

dt
= kac

\biggl( 
1 - \Gamma 

\Gamma m

\biggr) 
S  - kd\Gamma S,(2.7)

where ka and kd are parameters relating to the rates of adsorption and desorption,
respectively. The presence of S inside the derivative on the left-hand side of (2.7)
captures the depletion or accumulation of adsorbed surfactant due to changes in the
available surface area.

Free monomers in the bulk are produced both when surfactant desorbs from the
surface and when micelles break up, at a rate given by

dc

dt
=  - Nmk+0 c

Nm +Nmk - 0 cm  - kac

\biggl( 
1 - \Gamma 

\Gamma m

\biggr) 
S + kd\Gamma S.(2.8)

The total moles of surfactant per unit volume is given by

C = c+ \Gamma S +Nmcm.(2.9)

Adding (2.6), (2.7), and (2.8) shows that C is conserved, and it is therefore taken
to be a known constant C0, which is set by the initial conditions. It is of particular
interest to determine how drop breakup depends on the parameter C0, i.e., on the
total quantity of surfactant added to the system.

2.3. Nondimensionalization. We nondimensionalize using

t = \tau t\ast , \sigma = \sigma 0\sigma 
\ast , v = v0v

\ast , \phi =
\Phi 

v0
\phi \ast , \gamma =

1

\tau 
\gamma \ast ,

(2.10a)

\chi =
1

v0
\chi \ast , c = ccmcc

\ast , \Gamma = \Gamma m\Gamma \ast , cm =
ccmc

Nm
c\ast m, S =

\biggl( 
36\pi 

v0

\biggr) 1/3

\Phi S\ast ,

(2.10b)

where \tau is a characteristic breakup time-scale related to the underlying turbulent flow,
\sigma 0 is the undisturbed surface tension, v0 is a characteristic drop size, \Phi is the total
oil fraction, and ccmc denotes the critical micelle concentration (CMC) introduced in
section 1. As explained in [4], a suitable definition of the CMC may be obtained by
considering the equilibrium of a monomer--micelle mixture in the absence of any free
surfaces. From (2.6) and (2.9) in steady state with zero surface concentration, we
obtain

(2.11)
C

ccmc
=

c

ccmc
+

\biggl( 
c

ccmc

\biggr) Nm

,

where

ccmc =

\biggl( 
k - 0

Nmk+0

\biggr) 1/(Nm - 1)

.(2.12)
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EFFECT OF SURFACTANT ON TURBULENT DROPLET BREAKUP 133

Given that Nm is large, when C < ccmc the final term in (2.11) (representing micelles)
is negligibly small and c \approx C, while when C > ccmc we have c \approx ccmc. Thus (2.11) is
consistent with the identification of ccmc as the CMC for the surfactant.

The resulting dimensionless equations, with asterisks dropped, are

\partial \phi 

\partial t
(v, t) =  - \gamma (v, \sigma )\phi (v, t) +

\int \infty 

v

\gamma (\~v, \sigma )\chi (v, \~v)\phi (\~v, t) d\~v,(2.13a)

S =

\int \infty 

0

\phi (v, t)

v1/3
dv,(2.13b)

\sigma = 1 + \theta log(1 - \Gamma ),(2.13c)

dc

dt
=  - \scrK 0

\bigl[ 
cNm  - cm

\bigr] 
 - \scrK a\alpha [(1 - \Gamma )cS  - \eta \Gamma S] ,(2.13d)

d(\Gamma S)

dt
= \scrK a [(1 - \Gamma )cS  - \eta \Gamma S] ,(2.13e)

dcm
dt

= \scrK 0

\bigl[ 
cNm  - cm

\bigr] 
,(2.13f)

\scrC 0 = c+ \alpha \Gamma S + cm(2.13g)

with dimensionless parameters

\theta =
RT\Gamma m

\sigma 0
, \scrK 0 = k - 0 \tau , \eta =

kd\Gamma m

kaccmc
,(2.14a)

\alpha =
(6
\surd 
\pi )

2/3
\Phi \Gamma m

v
1/3
0 ccmc

, \scrK a =
\tau kaccmc

\Gamma m
, \scrC 0 =

C0

ccmc
.(2.14b)

The algebraic relation (2.13g) may be used to eliminate one of the concentration vari-
ables, for example, cm, and thus reduce (2.13d)--(2.13f) to a system of two differential
equations for c and \Gamma , coupled to the drop size evolution equation (2.13a) by the
surface area S.

2.4. Parameter values. The parameter \theta measures the relative variation in
surface tension due to changes in \Gamma , and its size depends primarily on the maximum
surface concentration, a property of the particular surfactant [2, 6]. We assume that \Gamma 
does not exceed 1 - e - 1/\theta , beyond which value (2.13b) would imply a negative surface
tension. The rates at which monomers adsorb onto droplet surfaces, and at which
micelles disassociate into monomers, are typically rapid compared to the breakup rate,
so the two ratios \scrK 0 and \scrK a are expected to be large [6]. The parameter \eta represents
the ratio of the rates of surfactant desorption and adsorption, which in most cases
is relatively small [6, 9]. Finally, the ratio \Gamma m/ccmc measures the length-scale of the

layer of surfactant monomers on the surface of the drops while v
1/3
0 represents a typical

droplet diameter. Thus, \alpha corresponds to how much surfactant is typically on the
surface of the droplets compared to how much is in the bulk. The value of \alpha is often
quite small, indicating that the majority of the surfactant resides in the bulk, at least
initially [6, 7, 9].

Estimated values of the dimensionless parameters for an example surfactant,
dioctyl sulfosuccinate, are given in Table 1 [1, 2, 6, 9, 18, 19]. These parameters
may vary significantly depending on the particular surfactant and application and
thus throughout this paper illustrative values will be used.
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134 R. M. PHILIP, I. J. HEWITT, AND P. D. HOWELL

Table 1
Typical values of dimensionless parameters for the example surfactant, dioctyl sulfosuccinate

[1, 2, 6, 9, 18, 19].

Parameter Value

Nm 15 - 100
\theta 0.07-1.9
\scrK 0 25
\eta 0.0206

\alpha 1.99\times 10 - 4

\scrK a 24

2.5. Initial conditions. Initially, we take the drop size to be log-normally dis-
tributed in v with mean at v = 1 in dimensionless variables, i.e.,

\phi (v, 0) = \phi 0(v) =
1

v\sigma v

\surd 
2\pi 

exp

\Biggl( 
 - 
\bigl( 
2 log v + \sigma 2

v

\bigr) 2
8\sigma 2

v

\Biggr) 
.(2.15)

Here \sigma v is the standard deviation of the associated normal distribution, related to the
variance \Delta of the initial size distribution by \sigma 2

v = log(1 + \Delta ). In our simulations we
take \Delta = 0.1.

For the majority of this paper we also assume that, at t = 0, all the surfactant
is instantaneously added to the bulk; there is initially no adsorbed surfactant on the
oil drops and the micelles and monomers in the injected surfactant are already in
thermodynamic equilibrium with each other. Hence, the initial conditions are given
by

c = c0, cm = cNm
0 , \Gamma = 0 at t = 0,(2.16)

where \scrC 0 = c0 + cNm
0 .

3. Constitutive relations. To close the model (2.13a)--(2.13g), we must decide
on the forms of the breakup rate, \gamma , and the daughter drop distribution, \chi . Some
progress can be made by dimensional analysis. Kolomogorov's local isotropic model
of turbulence implies that turbulent energy fluctuations are a function of the energy
dissipation rate \epsilon and the wave-length of fluctuations [21]. We assume that droplet
breakup is precipitated by turbulent fluctuations with wave-length comparable to the
drop diameter d = (6v/\pi )1/3 [12]. Then, by dimensional analysis, the corresponding
pressure fluctuations are of order \rho \epsilon 2/3d2/3, while the restoring capillary pressure is
of order \sigma /d, where \sigma is the surface tension. The ratio of these two scalings yields the
dimensionless Weber number

\itW \ite = \rho \epsilon 2/3d5/3\sigma  - 1 =

\biggl( 
6

\pi 

\biggr) 5/9

\rho \epsilon 2/3v5/9\sigma  - 1.(3.1)

A rate constant that is independent of drop size is given by \epsilon 3/5\rho 2/5\sigma  - 2/5. Therefore,
a general dimensionally consistent form of the breakup rate is given by

\gamma = K0\epsilon 
3/5\rho 2/5\sigma  - 2/5F (\itW \ite ),(3.2)

where K0 is a dimensionless constant and F is some function to be determined em-
pirically. The simplest possibility is to take F = 1 in (3.2), and we shall explore the
implications of this choice in section 4.
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EFFECT OF SURFACTANT ON TURBULENT DROPLET BREAKUP 135

To suggest a more general form of the function F , we note that large droplets are
not significantly affected by surface tension, implying that \gamma should be independent of
\sigma at large v. However, the restoring force of surface tension makes drops increasingly
difficult to break up with decreasing size, and some of the smallest droplets may be
unable to break up at all. These properties are satisfied by setting

F (\itW \ite ) = \itW \ite  - 2/5
\sqrt{} 

1 - \itW \ite c/\itW \ite \scrH (1 - \itW \ite c/\itW \ite ) ,(3.3)

as in [16, 17], where \scrH is the Heaviside function and \itW \ite c is a critical Weber number,
corresponding to a critical drop size vc below which droplets do not break up.

We note that the posed form of the breakup rate (3.2) neglects the influence of
viscosity \mu in opposing droplet deformation and breakup, which is measured by the
droplet capillary number \itC \ita = \mu \epsilon 1/3d1/3/\sigma [5, 20]. Viscous effects may become rele-
vant at very low values of the surface tension, e.g., when the surfactant concentration
is significantly above the CMC, but for simplicity we do not include them here.

We nondimensionalize as in (2.10). Taking the time-scale \tau as \sigma 
2/5
0 \epsilon  - 3/5\rho  - 2/5/K0,

the dimensionless version of (3.2) for F = 1 is simply

\gamma = \sigma  - 2/5.(3.4)

Alternatively, for the more complicated functional form (3.3), it is more natural to

take \tau = (6/\pi )2/9v
2/9
0 \epsilon  - 1/3/K0, in which case the dimensionless breakup rate is

\gamma = v - 2/9
\Bigl( 
1 - b\sigma v - 5/9

\Bigr) 1/2
\scrH 
\Bigl( 
1 - b\sigma v - 5/9

\Bigr) 
,(3.5)

where

b =
\itW \ite c\sigma 0(\pi /6)

5/9

\rho \epsilon 2/3v
5/9
0

(3.6)

is a rescaled version of the critical Weber number. In terms of this constant, the di-
mensionless critical droplet volume is vc = (b\sigma )9/5. Typical parameter values suggest
b = \scrO (10 - 3) [2, 7, 12, 16]; in our simulations we take b = 0.5\times 10 - 3.

The daughter drop distribution can be expressed as \chi (v, \~v) = vN(v, \~v)/\~v, where
N(v, \~v) is the expected number density of drops of volume v produced when a drop
of volume \~v breaks up. For simplicity, we take N(v, \~v) to be independent of v so the
distribution of daughter drop sizes produced is uniform. Ensuring (2.3) is satisfied
then determines

\chi (v, \~v) =
2v

\~v2
.(3.7)

Note that, although the number density of drops produced is uniform, the resulting
volume distribution is a monotonically increasing function of daughter drop volume v.

4. Drop-size independent breakup rate.

4.1. Numerical solution. Here we present numerical solutions of the model
(2.13), using the simplest constitutive relations (3.4) and (3.7) for the breakup rate
and the daughter droplet size distribution.

In this case it is possible to resolve the drop-surfactant behavior without explicitly
solving the integro-differential equation (2.13a) for \phi . We multiply (2.13a) by vn and
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136 R. M. PHILIP, I. J. HEWITT, AND P. D. HOWELL

then integrate from v = 0 to v = \infty to obtain

d

dt

\biggl( \int \infty 

0

vn\phi dv

\biggr) 
=  - n

(n+ 2)\sigma 2/5

\int \infty 

0

vn\phi dv.(4.1)

Taking n = 1 and n =  - 1/3 yields equations for the mean drop size, v =
\int \infty 
0

v\phi dv,
and droplet surface area, S, respectively. We obtain

dv

dt
=  - v

3\sigma 2/5
,

dS

dt
=

S

5\sigma 2/5
,(4.2)

which can be used along with (2.13b)--(2.13g) to solve for the surface tension, without
explicitly solving for the drop size distribution. The surfactant problem thus reduces
to the three coupled ODEs

dv

dt
=  - v

3\sigma 2/5
,(4.3a)

d\Gamma 

dt
= \scrK a [(1 - \Gamma )c - \eta \Gamma ] - \Gamma 

5\sigma 2/5
,(4.3b)

dcm
dt

= \scrK 0

\bigl[ 
cNm  - cm

\bigr] 
(4.3c)

with

\sigma = 1 + \theta log(1 - \Gamma ),(4.4a)

c = \scrC 0  - \alpha \Gamma S  - cm,(4.4b)

S = S(0)v - 3/5,(4.4c)

where S(0) = e2\sigma 
2
v/9 is the initial value of S. The initial conditions are as outlined in

subsection 2.5, i.e.,

v(0) = 1, \Gamma (0) = 0, cm(0) = cNm
0 .(4.5)

Once the surface tension has been determined using (4.3)--(4.4), the drop size
distribution, given by (2.13a) subject to (2.15), may be calculated analytically in this
simple case. In terms of a rescaled time variable \tau given by

(4.6) \tau =

\int t

0

\sigma (\~t) - 2/5 d\~t,

the master equation (2.13a) reduces to

(4.7)
\partial \phi 

\partial \tau 
(v, \tau ) + \phi (v, \tau ) = 2v

\int \infty 

v

\phi (\~v, \tau )

\~v2
d\~v.

Taking a Laplace transform in \tau , the solution of (4.7) may be found in the form

(4.8) \phi (v, \tau ) = e - \tau \phi 0(v) + ve - \tau 
\surd 
2\tau 

\int \infty 

v

\phi 0(u)

u2

I1

\Bigl( 
2
\sqrt{} 
2\tau log(u/v)

\Bigr) 
\sqrt{} 
log(u/v)

du,

where I1 is the modified Bessel function of order one and \phi 0(v) = \phi (v, 0) is the initial
droplet size distribution, which we take to be given by (2.15).
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Fig. 2. Solution of (2.13), with uniform breakup rate \gamma = \sigma  - 2/5 and parameter values \theta = 0.2,
\eta = 0.2, \alpha = 1, \scrK 0 = \scrK a = Nm = 102, and \scrC 0 = 3.7. (a)--(f) Solid blue curves show the numerical
solution. The asymptotic solutions are shown using dashed curves and open circles: red for T1 and
T3, orange for T2. Black dashed lines in (a) and (b) show results (4.9) for no surfactant. (a) Average
drop volume \=v; (b) drop surface area S; (c) surface tension \sigma ; (d) adsorbed surfactant concentration
per unit area, \Gamma ; (e) free monomer concentration c; (f) micelle concentration cm. (g) Drop size
distribution v\phi plotted versus log v for various times t. Black dashed curve shows results for no
surfactant at t = 8. (h) Variation of drop size distribution v\phi with log v and t.

If there is no surfactant in the system, then \scrC 0 = 0 so c = cm = \Gamma = 0, and it
follows that \sigma = 1 and the solution of the system (4.3), (4.4) is given by

v(t) = e - t/3, S(t) = S(0)et/9.(4.9)

The mean drop size decreases exponentially and the droplet surface area correspond-
ingly increases exponentially, as illustrated by the black dashed lines in Figure 2(a)
and (b).

Now let us include the effect of surfactant. We take the illustrative parameter
values \theta = 0.2, \eta = 0.2, \alpha = 1, \scrK 0 = \scrK a = Nm = 102, and \scrC 0 = 3.7. The blue solid
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138 R. M. PHILIP, I. J. HEWITT, AND P. D. HOWELL

curves in Figure 2(a)--(f) show numerical solutions of the ODE system (4.3)--(4.4).
The solid lines in Figure 2(g) illustrate v\phi versus log v for increasing values of t, from
(4.8). Since \phi dv = v\phi d(log v), this choice of axes ensures that the area under the
graph is conserved. Figure 2(h) is a surface plot of v\phi , in the (log v, t)-plane.

With increasing time, as the drops break up, the mode of the distribution shifts
toward smaller droplet sizes, and the distribution becomes more spread out. At large
times, drops continue to break up and no steady state is reached. This behavior
is a facet of the simple breakup model allowing small droplets to keep breaking up
indefinitely; we will show in section 5 the effects of a more realistic model that limits
the breakup of very small droplets. In Figure 2(g), we compare the distribution at
t = 8 with that with no surfactant, in dashed black. Compared to the case with no
surfactant, the distribution is focused on smaller drop sizes, as the decrease in surface
tension has encouraged greater droplet breakup. However, we also see that the surface
tension is not constant through the process; the surfactant concentrations evolve in
response to the changes in droplet surface area.

Figure 2(a)--(f) show that the dynamics occurs over three distinct phases, labeled
T1--T3. In the first (short-lived) phase, \Gamma rapidly increases and cm decreases, as
surfactant adsorbs to the droplet surfaces, thus depleting the supply of micelles in
the bulk. During the second phase, \Gamma and c remain roughly constant, but, due to the
increase in droplet surface area, the total fraction of adsorbed surfactant increases
and the micelle concentration cm decreases as a result. The third phase commences
when the system has run out of micelles; then the bulk and surface concentration
both start to decrease, so the surface tension increases and the rate of breakup slows
down. We next analyze each of these phases using asymptotic analysis, based on the
expected magnitude of the dimensionless rate constants \scrK 0, \scrK a and the micelle size
Nm.

4.2. Asymptotic solution. We now explicitly assume that \scrK 0, \scrK a, and Nm

are all asymptotically large, while treating other parameters as \scrO (1). The large
rate constants mean that the system rapidly approaches a state of thermodynamic
equilibrium, the evolution to which describes the first phase T1. During the subsequent
phases T2 and T3, the concentrations c, cm, and \Gamma evolve quasi-steadily, slaved to the
evolving droplet surface area S.

When Nm \gg 1, the term cNm in (4.3c) is exponentially small whenever c < 1 and
can only be order unity when c - 1 = \scrO 

\bigl( 
N - 1

m

\bigr) 
. It can therefore be approximated by

(4.10) cNm \sim 

\Biggl\{ 
0, c < 1,

eNm(c - 1), c \sim 1 +\scrO 
\bigl( 
N - 1

m

\bigr) 
.

The switch between these two cases, which correspond to being above or below the
CMC, is what distinguishes the dynamics in phases T2 (the second case) and T3 (the
first).

We assume that \scrC 0 > 1, so the initial concentration of surfactant added to the
system is above the CMC. Then, from (4.4b) and (4.5), we deduce the asymptotic
initial conditions

c(0) \sim 1 +N - 1
m log(\scrC 0  - 1), cm(0) \sim \scrC 0  - 1(4.11)

as Nm \rightarrow \infty .

4.2.1. Phase \bfitT \bfone . The first phase of the dynamics occurs when t = \scrO 
\bigl( 
\scrK  - 1

a

\bigr) 
,

and the surface concentration rapidly increases from its initial value to come into
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EFFECT OF SURFACTANT ON TURBULENT DROPLET BREAKUP 139

equilibrium with the bulk. Over this short time-scale, the average volume v and
surface area S do not depart significantly from their initial values. So long as the
concentration remains above the CMC, we can use the approximation c \sim 1 in (4.3b)
to obtain the decoupled ODE

(4.12)
d\Gamma 

dt
\sim \scrK a [1 - (1 + \eta )\Gamma ] .

The solution of (4.12) subject to \Gamma (0) = 0 is

(4.13a) \Gamma (t) \sim 1

1 + \eta 

\Bigl[ 
1 - e - (1+\eta )\scrK at

\Bigr] 
,

and the other variables are then given by

cm(t) \sim \scrC 0  - 1 - \alpha S(0)\Gamma (t), \sigma (t) = 1 + \theta log
\bigl( 
1 - \Gamma (t)

\bigr) 
, c(t) \sim 1.(4.13b)

The red dashed curves with open circles in Figure 2 demonstrate that (4.13) correctly
captures the initial rapid adjustment of the concentrations to achieve equilibrium
between the adsorbed and bulk surfactant phases.

The surface concentration \Gamma increases toward a maximum value 1/(1 + \eta ), and
the micelle concentration cm correspondingly decreases. Our supposition that the
system remains above the CMC throughout phase T1 is valid provided the initial
concentration is sufficiently large, specifically

(4.14) \scrC 0 > 1 +
\alpha S(0)

1 + \eta 
,

and we assume that this inequality is satisfied.

4.2.2. Phase \bfitT \bftwo . At the end of phase T1, the system has approached thermo-
dynamic equilibrium and the surfactant evolution equations (4.3b), (4.3c) become
quasi-steady. This means that, together with the conservation equation (4.4b), we
have algebraic relations

\Gamma =
c

\eta + c
, cm = cNm , \scrC 0 = c+

\alpha cS

\eta + c
+ cNm .(4.15)

During phase T2, the system is still above the CMC, so c \sim 1+\scrO 
\bigl( 
N - 1

m

\bigr) 
in (4.10).

Using the quasi-steady algebraic equations (4.15), it just remains to solve one ODE
(4.3a) for the average volume v. We thus obtain the asymptotic solution in phase T2

as

v(t) \sim e - \sigma  - 2/5
c t/3, cm(t) \sim \scrC 0  - 1 - \alpha S(0)

1 + \eta 
e\sigma 

 - 2/5
c t/5,(4.16a)

S(t) \sim S(0)e\sigma 
 - 2/5
c t/5, c(t) \sim 1 +N - 1

m log cm(t),(4.16b)

where \sigma c is the approximately constant (minimum) value of surface tension, obtained
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140 R. M. PHILIP, I. J. HEWITT, AND P. D. HOWELL

from the constant surface surfactant concentration \Gamma \sim 1/(1 + \eta ), namely,

\sigma c = 1 + \theta log

\biggl( 
\eta 

1 + \eta 

\biggr) 
.(4.16c)

The asymptotic solution (4.16) is shown by orange dashed curves and open circles
in Figure 2(a)--(f). The surface concentration remains roughly constant, and the
consequently reduced surface tension causes an increased breakup rate compared with
the case with no-surfactant (shown by the black dashed curve in Figure 2(a)--(b)). The
corresponding increase in surface area causes the concentration of available micelles
in the bulk to decrease, reaching zero at a critical time

(4.17) t = tc \sim 5\sigma 2/5
c log

\biggl( 
(1 + \eta )(\scrC 0  - 1)

\alpha S(0)

\biggr) 
.

4.2.3. Phase \bfitT \bfthree . For t > tc, we enter phase T3. The system is still in ther-
modynamic equilibrium but now below the CMC, so the micelle concentration cm is
approximately zero. From (4.15), the monomer concentration is thus approximated
by c \sim \scrC 0  - \alpha S\Gamma , and to leading order satisfies the quadratic equation

(4.18) (\scrC 0  - c) (\eta + c) - \alpha Sc = 0.

The larger root of (4.18) determines c as a function of the surface area S. Then (4.3a)
and (4.4c) may be reformulated as a separable ODE for S(t), namely,

(4.19a)
dS

dt
=

S

9

\Biggl[ 
1 - \theta log

\Biggl( 
\eta + \scrC 0  - \alpha S +

\sqrt{} 
(\eta  - \scrC 0 + \alpha S)2 + 4\eta \scrC 0
2\eta 

\Biggr) \Biggr]  - 2/5

,

which is solved subject to

(4.19b) S(tc) = (\scrC 0  - 1)(1 + \eta )/\alpha .

The solution of (4.19) gives an implicit transcendental equation for S(t), and
the other dependent variables are then determined in terms of S. The red dashed
curves and open circles in the region marked T3 in Figure 2(a)--(f) show that the
behavior of the full averaged model is well captured by the asymptotics. Now the
system is below the CMC, the bulk concentration c and surface concentration \Gamma 
gradually decrease, and the surface tension \sigma therefore returns toward its undisturbed
value of 1. Ultimately, the system therefore reduces to the surfactant-free dynamics,
with v \sim const \times e - t/3 as t \rightarrow \infty , albeit with a smaller prefactor multiplying the
exponential, as can be seen by comparison with the black dashed curve in Figure 2(a).

4.2.4. Influence of other parameters. In the simple averaged model analyzed
above, the maximal rate of droplet breakup occurs during phase T2, when the surface
tension is approximately constant at its minimum value. The net droplet breakup
can thus be increased by either decreasing the equilibrium surface tension \sigma c or by
increasing the duration tc of phase T2. The value of \sigma c, as defined by (4.16c), depends
only on characteristic properties of the surfactant being used, and in principle one
should try to design the surfactant (in conjunction with other additives) to make \sigma c

as small as possible.
In the solution shown in Figure 2, we have set \alpha = 1 but, in practice, \alpha may be

quite small. A small value of \alpha implies that only a small proportion of the available
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EFFECT OF SURFACTANT ON TURBULENT DROPLET BREAKUP 141

surfactant is adsorbed at the droplet surfaces, and it therefore takes a long time for
the surface area to become large enough to significantly deplete the bulk surfactant.
As shown by (4.17), the duration of rapid breakup tc grows logarithmically with \alpha .
In other respects, the dynamics for small \alpha resembles the behavior seen in Figure 2.

5. Drop-size dependent breakup rate. In the previous section, because of
the assumption that the breakup rate is independent of drop size, the model predicts
that the mean drop size decreases to zero at large times. In reality, we expect sur-
face tension effects to have an increasingly important influence, ultimately preventing
breakup of the smallest droplets. This expectation is captured by the more compli-
cated constitutive relation (3.5) for the breakup rate. In Figure 3, we show numerical
solutions of the full model (2.13) using the breakup rate (3.5) and daughter drop
distribution (3.7). These are obtained using the method of lines: drop size is dis-
cretized uniformly in log d, with 400 bins, the trapezoidal rule is used to evaluate the
volume integral in (2.13a), and the resulting system of ODEs is solved using ode15s in
MATLAB. The method has been validated by using it to reproduce the semianalytical
solutions found in section 4. Parameter values are taken to be b = 0.5\times 10 - 3, \theta = 0.2,
Nm = 20, \eta = \alpha = 1/\scrK 0 = 1/\scrK a = 0.01, and \scrC 0 = 2.1. Note the chosen parameter
values now reflect the anticipated smallness of \eta and \alpha .

Using the modified breakup rate produces qualitatively different results from those
in Figure 2. The broad pattern of rapidly decreased surface tension (and therefore
increased breakup) followed by gradual recovery once the micelle concentration is
depleted is similar. However, the significant difference is the presence of the Heaviside
function in (3.5), which prevents droplets below a critical size from breaking up and
results in convergence to a steady-state distribution, rather than the continual breakup
that occurs in Figure 2.

At very small times (corresponding to phase T1 from subsection 4.2), the surface
concentration \Gamma reaches approximate equilibrium with the bulk. During phase T2 (for
t \lesssim 8 in this case), the system remains above the CMC and the bulk concentration
c therefore remains almost constant. Droplet breakup causes a large increase in the
surface area S, by around two orders of magnitude, and the resulting dilution of the
adsorbed surfactant in turn causes a slight dip in \Gamma , which translates to a noticeable
increase in \sigma . As the increase in S levels off, \Gamma starts to increase again as the system
returns to thermodynamic equilibrium, and \sigma , in turn, decreases. Finally, for t \gtrsim 8,
the system drops below the CMC and we enter phase T3 of the dynamics, during
which the bulk concentration c falls to close to zero. Unlike in section 4, droplet
breakup eventually slows and then stops, and S approaches a steady state value by
around t \approx 35. Since the droplet surface area does not keep increasing, the absorbed
surface concentration is no longer being diluted and so \Gamma reaches a nonzero constant
equilibrium value.

The volume distribution \phi (v, t) is initially localized around v = 1. As the larger
drops break up, this local peak diminishes and moves to the left, and a large volume
fraction of smaller droplets is produced. According to the breakup function (3.5),
instead of breaking up indefinitely, the smaller droplets cluster around the critical
minimum droplet size vc = (b\sigma )9/5, which evolves in time according to the surface
tension \sigma . At intermediate times (see, e.g., t = 5), the distribution becomes bimodal,
with local maxima close to both the initial mean volume v(0) = 1 and the critical
volume vc at this time. The critical volume vc depends on \sigma and therefore increases
for t \gtrsim 8, resulting in the formation of a new peak in the distribution function, which
again becomes bimodal for t \gtrsim 8. At large times, for t \gtrsim 20, as droplet breakup
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Fig. 3. Numerical solutions of full-distribution model (2.13) using breakup rate (3.5) and
daughter drop distribution (3.7), with parameter values b = 0.5\times 10 - 3, \theta = 0.2, Nm = 20,
\eta = \alpha = 1/\scrK 0 = 1/\scrK a = 10 - 2, and \scrC 0 = 2.1. (a)--(f) Mean drop volume v, surface area S, sur-
face tension \sigma , adsorbed surfactant concentration \Gamma , free monomer concentration c, and micelle
concentration cm versus time t. Black dashed curves show results for no surfactant. Note the dif-
ferent scaling of the horizontal axis in (a)--(b). (g) Drop size distribution v\phi plotted versus log v for
increasing values of time t. Black dashed curve shows results for no surfactant at t = 20. (h) Vari-
ation of drop size distribution v\phi with log v and t. The white dotted curve is vc(t) = (b\sigma (t))9/5, the
critical drop size below which no drops break up. In (a), (b), and (f) the red dotted curves are the
final state mean drop size, surface area, and drop size distribution, respectively, for the case with no
surfactant given by (5.4)--(5.5).

slows, the system converges to a steady state. Eventually, by around t \approx 35, all of
the droplets which could have broken up have done so and a steady-state distribution
is reached with \phi (v, t) \equiv 0 for v > vc.

In Figure 3(g), the steady-state distribution at t = 20 when no surfactant is
added is plotted as a black dashed curve. Here the critical size vc, below which no
drops break up, is larger and is fixed (since the surface tension is constant). Thus

D
ow

nl
oa

de
d 

02
/0

3/
21

 to
 8

2.
5.

19
2.

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EFFECT OF SURFACTANT ON TURBULENT DROPLET BREAKUP 143

the distribution is unimodal, with its mode at the critical droplet size. Overall, the
addition of surfactant has a significant impact on reducing the maximum droplet size
and increasing the proportion of smaller droplets.

When using the breakup rate (3.5), since \gamma (v) \equiv 0 for v < vc(t), the evolution
equation (2.13a) for \phi reduces to

\partial \phi 

\partial t
(v, t) =

\int \infty 

vc(t)

\gamma (\~v, \sigma )\chi (v, \~v)\phi (\~v, t) d\~v(5.1)

for all v < vc(t). The only v-dependence in the right-hand side arises from \chi (v, \~v),
and the form of the daughter distribution function \chi therefore controls the behavior
of smaller droplets. Given the uniform daughter size distribution (3.7), (5.1) takes
the form

\partial \phi 

\partial t
(v, t) = 2v

\int \infty 

vc(t)

\gamma (\~v, \sigma )

\~v2
\phi (\~v, t) d\~v,(5.2)

so the rate of volume production increases linearly with v, and the largest proportion
of drops is produced close to v = vc.

In the case where no surfactant is added, the critical droplet size vc = b9/5 is
constant and small. Ultimately, all of the droplets bigger than vc break up, so the
system approaches a final distribution in which

(5.3) \phi (v, t) \rightarrow \phi f (v) =

\Biggl\{ 
\phi 0(v) +Av, v < vc,

0, v > vc,
as t \rightarrow \infty ,

for some constant A. Since the tail of the initial distribution (2.15) is negligible for
v < vc (with b = 0.5 \times 10 - 3, we have \phi 0(v) < 10 - 417 when v < b9/5), the steady
distribution may be found using mass conservation as

\phi f (v) \sim 
2v\scrH (vc  - v)

v2c
.(5.4)

This final state does not depend on the form of the breakup rate \gamma except through
the critical droplet size vc. The final mean droplet size and surface area are, corre-
spondingly, given by

v =
2vc
3

, S =
6

5v
1/3
c

.(5.5)

We see in Figure 3(a), (b), and (g) that the numerical solutions converge to these
values at larger times.

In the case where surfactant is added, the steady state distribution cannot be
so easily determined, since vc varies with time. However, we can confidently pre-
dict that the system ultimately does reach a steady state, with a nonzero surfactant
concentration c and corresponding equilibrium surface tension given by

(5.6) \sigma = 1 + \theta log

\biggl( 
\eta 

\eta + c

\biggr) 
.

Since all of the drops must end up being smaller than the final critical size vc = (b\sigma )9/5,
we can write the final surface area as

(5.7) S =
1

\xi v
1/3
c

,
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Fig. 4. Estimates for the final monomer concentration c, adsorbed surface concentration \Gamma ,
surface tension \sigma , and (scaled) critical volume vc, plotted versus the total surfactant concentration
\scrC 0. These estimates are obtained by using the approximation (5.8), with \xi = 0.5 and other parameter
values as in Figure 3.

where \xi \in (0, 1) parameterizes how much the distribution spreads below the critical
volume vc. The total surfactant conservation law (2.13g) thus provides a nonlinear
algebraic equation relating c to \scrC 0 and \xi , namely,

(5.8) \scrC 0 = c+ cNm +
\alpha 

\xi b3/5
c

\eta + c

\biggl[ 
1 + \theta log

\biggl( 
\eta 

\eta + c

\biggr) \biggr]  - 3/5

.

The spread of the final distribution below v = vc cannot be determined a priori
without solving for the entire evolution of the system. Nevertheless, with \xi an order-
one parameter, (5.8) gives at least a qualitative relation between the input surfactant
concentration \scrC 0 and the final bulk concentration c. Moreover, armed with our esti-
mate for c, we can then compute estimates of the remaining key quantities. If we take
a representative value of \xi = 0.5, then, using the parameter values from Figure 3, we
find the approximate relations between \scrC 0 and monomer concentration c, adsorbed
surface concentration \Gamma , surface tension \sigma , and critical volume vc depicted in Figure 4.
With \xi = 0.5, we obtain c \approx 0.048 from (5.8), and then approximate the surface area
and surface concentration as S \approx 248 and \Gamma \approx 0.83, which are all encouragingly in
line with the numerically computed values of c = 0.0353, S = 266.3, and \Gamma = 0.78 ob-
served in Figure 3. Although ad hoc, such approximations can provide useful rules of
thumb for practitioners to determine how much surfactant must be added to achieve
desired values of these quantities at the end of the process. It is noteworthy that the
approximation (5.8) does not depend on the details of the droplet breakup law: it
relies only on the existence of a critical droplet size that scales self-consistently with
the surface tension, as well as a plausible guess for the parameter \xi .

6. Different surfactant injection scenarios.

6.1. Varying surfactant concentration. We have shown that our model cap-
tures the interaction between adsorbed surfactant and dissolved monomers and mi-
celles and how the resulting reduction in surface tension promotes droplet breakup.
We will now use the model to investigate how the amount of surfactant used and the
way in which it is added influence the net effectiveness of droplet breakup. It is useful
to construct a metric to compare the effectiveness of different surfactant injection
protocols. In practice, the aim is to ensure that as large a fraction of oil as possible
is in droplets small enough so they can disperse in the water. Therefore, we calculate
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Fig. 5. Numerical solutions of full-distribution model (2.13) using breakup rate (3.5) and daugh-
ter drop distribution (3.7), with parameter values b = 0.5\times 10 - 3, \eta = \alpha = 1/\scrK 0 = 1/\scrK a = 10 - 2,
Nm = 20, \theta = 0.2 and different values of the added surfactant concentration \scrC 0. (a) Final drop size
distribution at t = 50, v\phi plotted versus log v; (b)--(f) surface area S, surface tension \sigma , adsorbed
surfactant concentration \Gamma , free monomer concentration c, and micelle concentration cm versus time
t. Black dashed curves show results for no surfactant.

the fraction fd of droplets below a certain diameter d, that is,

(6.1) fd(t) =

\int \pi d3/6

0

\phi (v, t) dv,

with d here taken to be 0.005.
First we consider the effect of varying the total concentration \scrC 0 of surfactant in

the system. In Figure 5, we show numerical solutions of the full model (2.13) using
breakup rate (3.5) and daughter drop distribution (3.7), with different values of \scrC 0
and all other parameter values the same as in Figure 3.

When 0 < \scrC 0 \lesssim 1, the added surfactant is below the CMC so there is no store
of micelles to keep the available surfactant topped up. The surface tension decreases
initially, but recovers relatively soon toward values close to the undisturbed value as
the surfactant is adsorbed onto the increasing surface area of the drops. The eventual
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Fig. 6. Fraction of drops with diameter d < 0.005 (a) plotted versus time t for different
concentrations \scrC 0 of injected surfactant and (b) versus \scrC 0 at final time t = 50. The same parameter
values as Figure 5 are used here.

steady distribution shown in Figure 5(a) therefore varies only marginally from the no-
surfactant case \scrC 0 = 0. The case with \scrC 0 = 2 is qualitatively similar to the solution
shown in Figure 3. There is a significant phase T2, during which the system remains
above the CMC and the surface concentration \Gamma is close to 1, following which the
system converges to a steady state with \Gamma \approx 0.6. The steady distribution is bimodal,
with two local maxima reflecting the two associated values of the cut-off droplet
volume vc. When a large concentration \scrC 0 = 6 is added, the micelles never run out
(i.e., the system never enters phase T3) and so the surface concentration \Gamma remains
high while the drops are breaking up, resulting in a unimodal steady distribution. The
dynamics is essentially equivalent to that for a constant, but lower, value of surface
tension and therefore a smaller final critical drop size vc.

Figure 6(a) shows how the fraction f0.005 of droplets below our chosen dimension-
less diameter d = 0.005 varies with time for each of the values of \scrC 0 used in Figure 5.
In Figure 6(b), we plot the eventual steady-state value of the fraction f0.005 of small
droplets versus the injected surfactant concentration \scrC 0. With \scrC 0 \lesssim 1, the fraction
of small droplets departs only marginally from the no-surfactant case \scrC 0 = 0. As the
added surfactant concentration increases above the CMC (\scrC 0 \gtrsim 1), there is a signifi-
cant increase in the fraction of small droplets with d < 0.005. Adding more surfactant
initially serves to increase the micelle concentration but, with time, these additional
micelles disassociate and further reduce the surface tension, leading to the production
of small droplets. Above a critical concentration \scrC 0 \approx 5.5, all of the droplets ulti-
mately end up below the target diameter d = 0.005. Any additional surfactant goes
into creating unnecessarily smaller droplets.

We can use (5.6) and (5.8) to estimate the critical surfactant concentration re-
quired to ensure that \ita \itl \itl of the droplets end up smaller than a given diameter d.
Setting vc = (b\sigma )9/5 = \pi d3/6, we find from (5.6) that the corresponding value of the
bulk monomer concentration is

(6.2) c = \eta 

\Biggl\{ 
exp

\Biggl[ 
1

\theta 

\Biggl( 
1 - 1

b

\biggl( 
\pi d3

6

\biggr) 5/9
\Biggr) \Biggr] 

 - 1

\Biggr\} 
\approx 0.525

with the parameter values used in Figure 5. We then infer from (5.8) (persisting with
the postulated value of \xi = 0.5) a critical total concentration of \scrC 0 \approx 5.4, which is
nicely in line with what we observe in Figure 6(b).

D
ow

nl
oa

de
d 

02
/0

3/
21

 to
 8

2.
5.

19
2.

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EFFECT OF SURFACTANT ON TURBULENT DROPLET BREAKUP 147

6.2. Varying surfactant injection method. We have thus far assumed that
all the available surfactant is added to the system at t = 0. We now relax this
assumption and model the effects of different injection methods by taking C(t) not to
be a constant value \scrC 0 but instead to be an increasing function of t with maximum
value \scrC 0. The bulk surfactant conservation equation (2.13d) is then modified to

dc

dt
=  - \scrK 0

\bigl[ 
cNm  - cm

\bigr] 
 - \scrK a\alpha [(1 - \Gamma )cS  - \eta \Gamma S] + g(t)(6.3)

with c(0) = 0, where

dC

dt
= g(t)(6.4)

is the net rate at which surfactant is added to the system.
We investigate here an idealized scenario in which the surfactant is injected at a

constant rate over a time interval T , after which the net concentration stays at the
constant value \scrC 0, i.e.,

C =

\Biggl\{ 
\scrC 0t/T, 0 \leq t < T,

\scrC 0, t \geq T.
(6.5)

The case we have considered thus far, where all the surfactant is injected instanta-
neously at t = 0, corresponds to the limit T \rightarrow 0, while larger values of T correspond
to a more gradual addition of surfactant.

In Figures 7 and 8 we show results from numerical solutions of the full model
(2.13) with the modified conservation equation (6.3). We use the size-dependent
breakup rate (3.5) and uniform daughter drop distribution (3.7), with parameter
values b = 0.5\times 10 - 3, \theta = 0.2, Nm = 20, \eta = \alpha = 1/\scrK 0 = 1/\scrK a = 10 - 2, and \scrC 0 = 3.
We see that holding some surfactant in reserve and adding it gradually allows us to
lower the value of the surface tension \sigma at large times, but means that we no longer
achieve such small values of \sigma at small times.

When the surfactant is added rapidly, as in the T = 0 and T = 10 curves in Fig-
ure 7(a), we observe a bimodal distribution of droplet sizes, with very small droplets
created during the early phase when the surface tension is very low, and larger drop-
lets created later on. In contrast, larger values of T result in a unimodal distribution,
with the droplet sizes more concentrated about the final critical maximum volume vc.
In terms of the discussion leading to (5.8), the stronger localization near v = vc corre-
sponds to a larger value of \xi closer to 1, resulting in a larger final bulk concentration
c for a given net concentration \scrC 0. The stronger focusing of the size distribution is
ultimately responsible for a lower value of the final surface tension and therefore a
smaller critical drop size vc, as may be observed with T \gtrsim 15 in Figure 7(a).

Figure 8(a) shows the time evolution of the fraction fd of droplets smaller than
a critical dimensionless diameter d, here taken to be 0.004. Since the production of
very small droplets occurs mainly over the time interval t \lesssim 10, the key to maximizing
the proportion of small drops is to maximize the surfactant concentration during this
initial period, when the surface area S is still relatively small. It follows that adding
surfactant more slowly, i.e., increasing T in (6.5), always results in fewer of the smallest
drops being produced.

In Figure 8(b), we show the evolution of fd with a larger critical droplet size
d = 0.007. In this case we achieve better results by introducing the surfactant more
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Fig. 7. Numerical solutions of full-distribution model (2.13) using breakup rate (3.5) and
daughter drop distribution (3.7), with parameter values b = 0.5 \times 10 - 3, \theta = 0.2, Nm = 20, and
\eta = \alpha = 1/\scrK 0 = 1/\scrK a = 10 - 2. The surfactant is injected according to (6.5) with \scrC 0 = 3 and dif-
ferent values of the injection time T . (a) Steady-state drop size distribution, v\phi plotted versus
log v; (b)--(f) surface area S, surface tension \sigma , adsorbed surfactant concentration \Gamma , free monomer
concentration c, and micelle concentration cm versus time t.

gradually: all of the droplets with a diameter larger than d are eventually eliminated
only for the largest values of T = 15 or 20. This figure demonstrates that, when the
total quantity of available surfactant is limited, improved performance may be gained
by adding the surfactant intelligently. Keeping the surface tension roughly constant
during droplet breakup results in a localized final distribution with a smaller value
of vc for a given \scrC 0. In contrast, when we add the surfactant all at once, we create
a lot of very small droplets early on, thereby depleting the available surfactant and
ultimately leaving a significant tail of larger droplets that never break up.

Figure 8(c) demonstrates how the optimum surfactant injection strategy depends
on the target droplet diameter d. Given the total surfactant concentration \scrC 0 = 3, it
is impossible to make all of the droplets smaller than the smallest size d = 0.004; the
best strategy in this case is to add all of the surfactant at the start to generate as
many small droplets as possible. However, for larger values of d, one can increase the
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Fig. 8. Fraction fd of droplets with diameter smaller than (a) d = 0.004 and (b) d = 0.007,
versus time t, with the same parameter values as in Figure 7. (c) Fraction fd versus T for different
d. Large T approximation (6.7) in dashed lines. Note for simulations in (c) we discretize uniformly
in log d, with 600 bins.

value of fd by introducing the surfactant gradually. With d = 0.005 and d = 0.006,
there is an optimum choice of time-scale T that produces the greatest fraction of small
droplets. For the largest value of d = 0.007, the fraction fd of small droplets increases
monotonically with T , and one can entirely eliminate droplets with a larger diameter
than 0.007 if T is taken sufficiently large.

In the limit of extremely slow addition of surfactant, with T \gg 1, the system
must evolve quasi-steadily through a sequence of equilibrium states parameterized by
the value of the total surfactant concentration C(t). Provided C(t) is monotonically
increasing, we expect the surface tension \sigma , and therefore also the critical droplet
volume vc, to be monotonically decreasing functions of t. The minimum value of vc
is therefore attained in the limit t \rightarrow \infty , and ultimately, when all of the droplets
larger than vc have broken up, the distribution must approach the piecewise linear
function \phi f (v) given by (5.4). We deduce that the final bulk concentration c and
the total injected surfactant concentration \scrC 0 satisfy the relation (5.8) with \xi = 5/6.
The droplet size distribution is then exactly the same as (5.4) (for the case where no
surfactant is added), namely,

\phi \sim 2v\scrH (vc  - v)

v2c
,(6.6)

just with a smaller constant value of the surface tension and so a smaller value of
vc. For the case where T = 20, this is approximately true, with \phi in Figure 7(a)
approximately proportional to v for v < vc.

With \xi = 5/6 and the other parameter values as in Figures 7 and 8, we find from
(5.8) that the final bulk concentration is given by c \approx 0.4177, and the corresponding
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values of the surface tension and critical droplet volume are \sigma \approx 0.2488 and vc \approx 
9.348 \times 10 - 8. Using this value of vc and inserting (6.6) into (6.1), it follows that, in
the limit where T is very large, the fraction of droplets smaller than a given diameter
d approximately takes the form

(6.7) fd \sim 

\left\{     
\biggl( 

d

dc

\biggr) 6

, d < dc,

1, d \geq dc,

with dc \approx 0.00563. The case where T = 20 approaches this large T approximation,
as shown by the dashed lines in Figure 8(c).

7. Discussion and conclusions. In this paper, we have constructed a math-
ematical model for the breakup of oil droplets in a homogeneous turbulent flow and
used the model to examine how the droplet size distribution varies with surfactant
application. The large-time behavior of the system is of most interest and, as we
have shown, is highly dependent on the choice of constitutive relation for the droplet
breakup rate. If droplets of all sizes are allowed to keep breaking up (as in section 4),
there is no steady state. The surface tension eventually returns to its undisturbed
value, and so the late-time behavior is similar to that with no surfactant.

It is more realistic to impose a constitutive relation that limits the breakup of
very small droplets (as in section 5). In this case, the breakup dynamics separates into
two distinct phases (T2 and T3) corresponding to the bulk surfactant concentration
being above or below the CMC. In the first of these phases the surface tension is
essentially determined by the equilibrium surfactant properties. At later times, the
surface tension tends toward a constant value that is not necessarily equal to the
undisturbed value, but depends on the history of the drop-surfactant interaction, and
in particular on the amount of droplet surface area that has been created. Such
subtleties cannot be captured by just changing the undisturbed surface tension to
a new lower constant value, as has been done in similar population models used
previously in the literature [25, 24].

Our model enables us to examine how to optimize surfactant application. We
find, unsurprisingly, that increasing the total surfactant concentration \scrC 0 facilitates
the production of smaller droplets. Equation (5.8) allows one to estimate how the
final values of the surfactant concentration and maximum droplet size depend on \scrC 0,
in terms of an order-one dimensionless parameter \xi that characterizes the spread of
the droplet size distribution. For a given value of \scrC 0, one can reduce the maximum
remaining droplet size by achieving a more localized distribution and thus increasing
the value of \xi . Consequently, it can be advantageous to add the surfactant gradually,
in such a way as to keep the surface tension approximately constant, and thereby
produce droplets that are all of a similar size. In contrast, adding all of the surfactant
at once tends to produce a bimodal distribution, dominated by both very small and
medium-sized droplets.

Our model makes a number of simplifying assumptions. First, while we focus on
droplet breakup, we neglect coalescence. This is a reasonable assumption for relatively
small volume fractions of droplets, so that droplet-droplet collisions occur infrequently.
Moreover, when droplets are coated with surfactant, they may be less likely to coalesce
even if they come into contact. Second, we assume that \Gamma is the same for all droplets.
If the system is not in thermodynamic equilibrium, when a larger drop breaks into
two smaller droplets the value of \Gamma on the daughter droplets changes. An alternative
model might take \phi to be a distribution over both v and \Gamma . However, after the short
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and uninteresting stage T1, the system is close to thermodynamic equilibrium, and it
is therefore reasonable to take \Gamma to be the same for all droplets, at least during stages
T2 and T3 when significant breakup occurs.

In addition, our results rely on our choice of constitutive law (3.5) for the droplet
breakup rate. More complex breakup rates may be found, e.g., in [23, 24, 25, 26], which
draw an analogy between the interaction of droplets with the deforming turbulent
eddies and collisions in ideal gases. There are various other competing theories but it
is difficult to ascertain which of these is correct [15], since the droplet breakup cannot
be measured directly in experiments. Instead, a particular breakup rate can only be
validated by using a droplet population model to predict drop size distribution for
comparison with empirical data. Simpler breakup rates, such as that used in (3.5),
make no attempt to capture secondary droplet phenomena such as tip-streaming,
where turbulent shearing produces long thin trails of oil behind a drop [11]. However,
they incorporate the important large-scale features of droplet breakup and can be
more directly validated with experimental data, as in [17].

In principle, it is not difficult to extend our model to include spatial variation as
well as time evolution. This is useful in examining what happens in a deep-sea oil
spill, for example, where a turbulent jet of oil is released from the ocean floor. The
breakup of oil drops in this turbulent flow and the effect of surfactants can then be
coupled to models for the motion and energy of the turbulent jet, with the added
complications of transport and dilution, which mean that \Phi and C are no longer
conserved quantities [20].
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